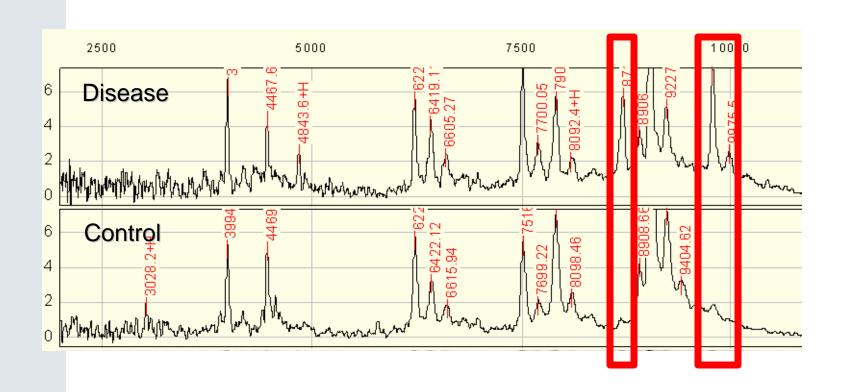
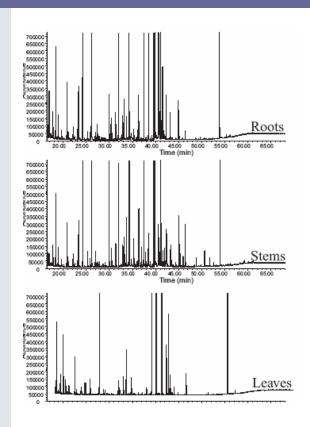


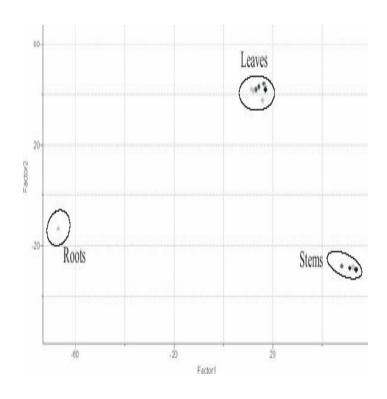
Proteomics SIG

- Spectrometry-based Proteomics
- Standards and Data Exchange

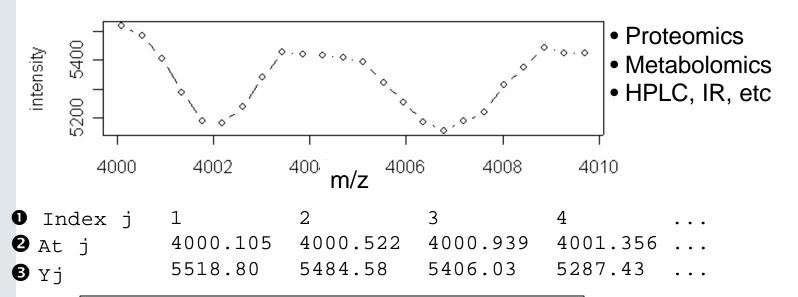

Identification Studies

Profiling Studies




Courtesy: Ciphergen

Matabolomics



caBIG cancer Biomedical

Spectrum Data

- 1 Index j: also called clock tick, scan #, sample #, variable #
- 2 At j: also called m/z, mass
- 3 Yj: also called intensity, relative intensity, standardized intensity, abundance

Ontology and Common Data Element

of the optimization methodology, this method can be applied to separations where no prior knowledge of the feed mixture composition exists, which is frequently the case in industrial applications.

Nomenclature

A	user-adjustable weight
a_i	response model parameters
B	user-adjustable weight
COF	chromatographic optimization function
f_i	measure of separation of peak pair i (Figure 2)
g_i	measure of separation of peak pair i (Figure 2)
K_i	peak geometry penalty for peak i
M	number of expected peaks
N	actual number of eluted peaks
n_{ρ}	number of peaks exhibited on chromatogram
R_{ij}	resolution between peaks <i>i</i> and <i>j</i>
$\sum R_{ij}$	summation of individual peak pair resolutions over the entire chromatogram
t	total analysis time

- tion of Phenylurea Pesticides using Ternary Mobile Phase Gradients in Reversed-Phase HPLC. *J. Liq. Chromatogr.* 1991, 14, 3125–3151.
- Klein, E.; Rivera, S. Neural Network Signal Interpretation for Optimization of Chromatographic Protein Purifications. Appl. Math. Computer Sci. 1998, 8, 865–886.
- Klein, E.; Rivera, S. A Review of Criteria Functions and Response Surface Methodology for the Optimization of Analytical Scale HPLC Separations. J. Liq. Chromatogr. Relat. Technol. 2000, submitted for publication.
- Lindberg, W.; Johansson, E.; Johansson, K. Application of Statistical Optimization Methods to the Separation of Morphine, Codeine, Noscapine and Papaverine in Reversed-Phase Ion-Pair Chromatography. J. Chromatogr. 1981, 211, 201– 212.
- Lundell, N.; Markides, K. Optimization Strategy for Reversed-Phase Liquid Chromatography of Peptides. J. Chromatogr. 1993, 639, 117–127.
- Palasota, J.; Leonidou, I.; Palasota, J.; Chang, H.-L.; Deming, S. Sequential Simplex Optimization in a Constrained Simplex Mixture Space in Liquid Chromatography. Anal. Chim. Acta 1992, 270, 101–106.
- Wang, Q.-S.; Gao, R.-Y.; Yan, B.-W. Computer-Assisted Optimization of pH and Ion Concentration Selectivity in HPLC

Biotechnol. Prog., 2000, Vol. 16, No. 3

Proteomics: Needs and Standards

Needs

- Tracking lab work flows -- LIMS
- Data storage and retrieval -- Proteomic Databases
- From data to biomarkers Analytical Algorithms
- Interoperation among analytical systems Grid Computing

Standards

- MIAPE: Minimum Information About Proteomics Experiments
- SMOS: Statistical Model Of Spectra (under development at Duke)

Organism SampleOrigin analyte processing species_name description MobilePhase Column strain_identifier condition AssayDataPoint Component relevant_genotype OntologyEntry description condition_degree description manufacturer category environment part number **TaggingProcess** concentration protein_assay value tissue_type batch number 0.,1 lysis_buffer description cell_type internal length PercentX tag_typ cle phase internal_diameter 9.1 OtherAnalyte 2...n percentage coolyte parameters • ProcessingStep stationary_phase ation bead_size OtherAnalyte name GradientStep metapolic_tabel pore size ...al_volume step_time name temperature AnalyteProcessingStep Experiment flow_rate Sample, hypothesis Fraction injection volume sample id Analyte Gel method_citations parameters_file start_point sample_date result_citations description end_point experimenter raw_image ChemicalTreatment protein_assa Gelltem annotated image ion MassSpecMachine software_version MassSpecExperiment uderi itisations TreatedAr Vte area manufacturer warped_image description model name intensity warping_map parameters_file Gel_{1D} local_background Band software version equipment denaturing_agent annotation ercent_acrylamide tane_number IonSource mass_start annotation_source apparent_mass solubilization_buffer Electrospray mass end type. volume stain details spray_tip_voltage run_details collision_energy pixel_x_coord protein assay Spot spray tip diameter pixel_y_coord in-gel_digestion 0..1 apparent_pi solution_voltage Gel2D pixel radius background apparent_mass cone_voltage normalisation pi_start pixel_size_x loading_type 0...1 mzAnalysis normalised volume pi_end pixel_size_y BoundaryPoint solvent mass_start type interface manufacturer pixel_x_coord mass end spray_tip_manufacturer DiGEGel pixel_y_coord first dim details RelatedGelItem dye_type second dim details description Detection DiGEGelltem excitation_wavelength gel_reference exposure_time dye_type MSMSFraction item_reference tiff_image target_m_to_z)uadrupole matrix_type plus_or_minus DBSearch grid voltage description acceleration_voltage PeakList username 1... list_type ion_mode Tandem id date pole ListProcessing SequenceData n-terminal_aa description ription c-terminal_aa Otherionisation mass_value_type smoothing_process source_type background_threshold count_of_specific_aa IonTrap sequence name name_of_counted_aa iomiset ion... gas_type Peak regex_pattern OntologyEntry gas_pressure m to z PeptideHit rf_frequency category abundance excitation_amplitude value e multiplicity pe description isolation_centre ProteinHit isolation_width database all_peptides_matched information OthermzAnalysis final_ms_level database_date Chromatogram probability parameter f name CollisionCell Protein ToF gas_type ccession_number gas_pressure reflectron_state OntologyEntry max missed cleavages gene_name collision_offset internal_length PeakSpecific. category mass value type synonyms ChromatogramIntegration value fragment_ion_tolerance organism resolution peptide_mass_tolerance description orf number PEDRo UML Class Diagram: Key to colours software version accurate mass mode description Sample Generation Sample Processing RelatedGelItem background_threshold mass error type sequence area under curve description modifications mass_error Mass Spectrometry MS Results Analysis peak_description gel reference predicted_mass protonated sister_peak_reference predicted_pi icat option item reference

MIAPE

Statistical Model Of Spectra (SMOS)

Scope

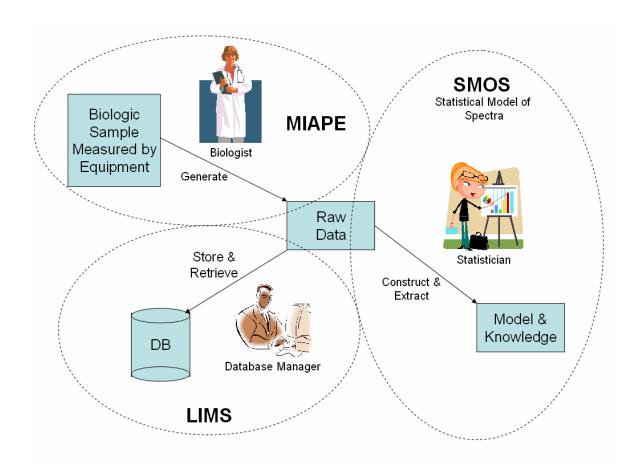
Spectrum-based profiling methods, such as proteomics and metabonomic

Focus

Statistical modeling

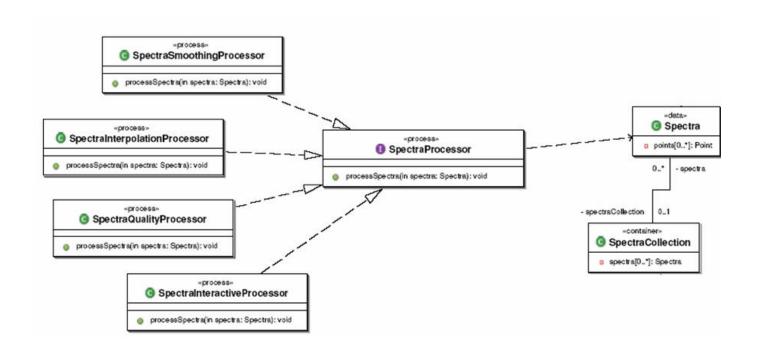
Purpose

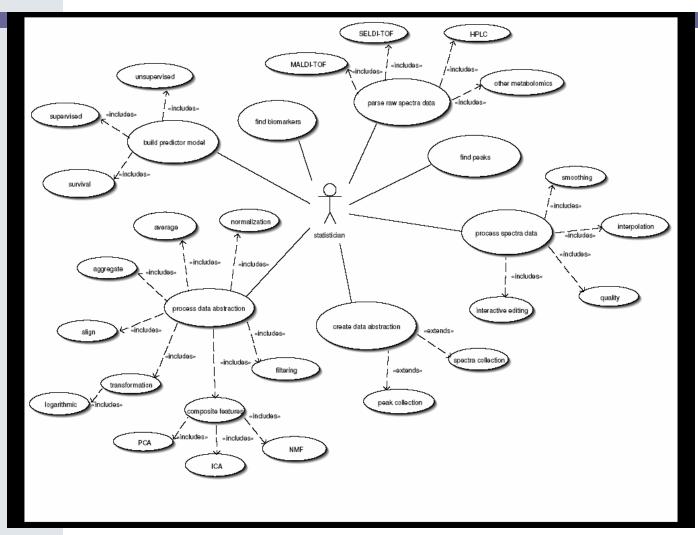
- Standard for statistical data analysis, exchange, comparison, and verification
- Audit trail for statistical manipulation of spectral data

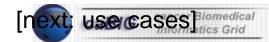

Statistical Modeling of Spectra (SMOS)

- Single spectrum
 - Baseline removal, Smoothing etc.
- A collection of spectrum
 - Normalization, Aggregation, Alignment etc.
- Raw spectrum -> Extracted Features
 - Peaks, Bins, Principle components
- Extracted Features -> Models
 - Clustering, Classification, and Survival
 - Biomarker discovery

[Next: graphic models of SMOS] cable (Most informatics Grid


Relationship between MIAPE and SMOS


SMOS: UML model (part)

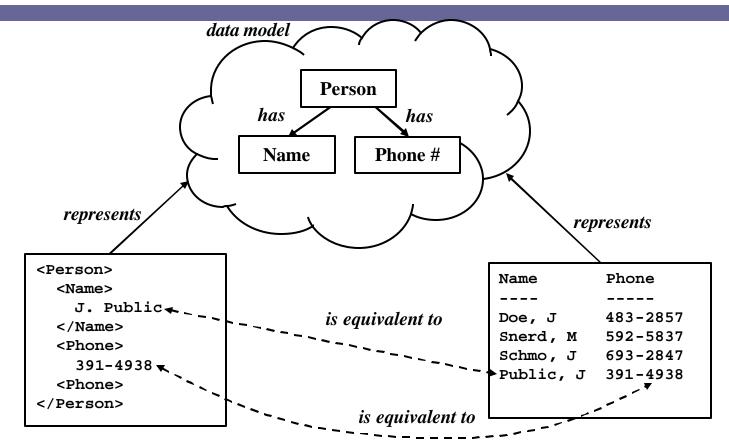


SMOS: Use case Model

Summary of Activities in the Proteomics SIG

- ▶ LIMS Fox Chase
- ▶ Q5 Dartmouth
- ▶ Rproteomics Duke

Discussion


Data and Metadata

- What is data?
 - Observational (e.g., sensor readings)
 - Computational (e.g., output of simulation)
- What is metadata? data about data
 - Descriptive (e.g., biological specimen)
 - Relational (e.g., peak table generated from raw spectrum)
 - Contextual (e.g., units of measure)
- What's the difference?
 - Because metadata is still data, the difference could be blurred
 - Metadata is data that helps us use and understand other data

From Data Model to Exchange Format

interchange format 1: XML

interchange format 2: tabular

Data Exchange

- Digital representation of data/metadata model (e.g., file, protocol message)
- Components of an interchange format
 - Syntax
 - Elements (e.g., area code, exchange)
 - Rules governing element types, occurrence, order, cardinality, etc. (e.g., area code is a three-digit integer which precedes the exchange)
 - Representation (e.g., XML, ASN.1, columnar)
 - Encoding (e.g., Unicode, ASCII, binary encoding)

